
Hashing

See Section 10.2 of the text.

Maps in general are associative structures -- they associate
values with keys and allow for efficient searches based on
the keys. TreeMaps use balanced binary search trees
based on comparative properties of the keys. We know
that we can search a balanced binary search tree with n
items in time O(log(n)), so these perform well. However,
there is a second Map implementation called a HashMap
that is sometimes preferable. HashMaps have two
advantages:

a) HashMaps to not require us to compare values of
the keys, so the Key class does not need to
implement the Comparable interface.

b) Under certain reasonable conditions HashMaps give
constant-time searches.

These properties don't come without any cost.
You lose some things with HashMaps.

TreeMaps make it easy to find the smallest key.
In TreeMaps it isn't difficult to go from one key
value to the next, or to get an ordered list of
the current keys. You don't easily get those
things with HashMaps.

Here is the idea of hashing. Suppose we want to
represent a set of numbers in the range from 0 to
999. One way would be to make an AVL tree with
base type Integer that held the numbers in the
set. The lookup time to determine if something is
in the set would be the logarithm of the size of the
set.

Here is an alternative -- maintain an array A of
1000 booleans. Initialize the entries to false. Add
a number n to the set by changing A[n] to true.
Then to determine of number n is in the set, just
return A[n]. That is certainly constant-time
insertion and constant-time lookup.

Suppose instead we had sets of colors, with
the only color options being red, green, blue,
yellow, black, white, purple and chartreuse.
We could arbitrarily assign numbers to the
colors, such as red 0, green 1, blue 2, yellow 3,
black 4, white 5, purple 6, and chartreuse 7
and play the same game with an array of 8
boolean entries -- element [3] of the array is
true if the set includes the color yellow.

Such a function, which inputs an object and
returns a number for it is called a "hash
function". The array is called a HashTable and
its use to provide dictionary-type structures
(associating values with keys) is called a
HashMap.

By the way, the "hash" part of the name
comes not from hashish, which we know Alice
B. Toklas put in brownies, but from hash as a
mixture of foods (e.g. corned beef hash), since
the data in a hash table is mixed up in what
seems to be random order.

The hash function tells us where to look in the
table or array for a value. There is one
complication. In most situations the space of
data values is vastly larger than the size of the
table. For example, we might want to maintain
a set of people, and use their names as the
keys.

If you consider <first name, last name> pairs such
as "Bob Geitz" or "Marvin Krislov" there is an
enormous number of possible names. If the typical
set size is 10 or so, it would be very wasteful to
make a hash table with one entry for every possible
name, even if we had a catalog of all possible
names. If we use a small table and require the
hash function to map keys into table indices, it is
inevitable that some keys will hash to the same
index. This is called a "collision".

Here is how Java computes the hash value of a
string s: Suppose s has length n, so its entries
are s[0], s[1], ... s[n-1].

Let u[i] be the numeric unicode value of s[i]
(65 for 'A', 97 for 'a', etc.).

Then the hashCode for s is
u[n-1]310 +u[n-2]311 + ... + u[0]31n-1

For a long string this will overflow the size of
an integer, which means that it might appear
positive or negative.

For example, the integer values of the characters
'b' and 'o' are 98 and 111 respectively. So the
hashCode for "bob" is

98*310+111*311+98*312 = 97717.

Indeed, if you execute the line

System.out.println("bob".hashCode());

it prints 97717

The Java hashCode is computed independently of
any particular hash table. Once you have a table
you can compute the hash function as

hashValue = hashCode % tableSize;
if (hashValue < 0)

hashValue += tableSize;

